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SUMMARY 

In this paper computations in the two dimensional case of a harmonic Navier-Stokes problem with periodic 
boundary conditions are presented. This study of an incompressible viscous fluid leads to  a non-symmetric 
linear problem (very low Reynolds number). Moreover unknown functions have complex values (mono- 
chromatic dynamic behaviour). Numerical treatment of the incompressibility condition is a generalization 
of the classical treatment of Stokes problem. A mixed formulation, where discrete pressure plays the role 
of Lagrange multipliers is used (Uzawa algorithm). 

Two conforming finite element methods are tested on different meshes. The second one uses a classical 
refinement in the shape function: the so-called bulb function. All computational tests show that the use of 
a bulb function on each element gives better results than refinement in the mesh without introducing too 
many degrees of freedom. Finally numerical results are compared to experimental data. 

KEY WORDS Navier-Stokes Problem Monochromatic Dynamic Behaviour Uzawa Algorithm Darcy’s Law Con- 
forming Finite Element Methods 

INTRODUCTION 

This work is a numerical checking of the generalized Darcy’s law. This law is the generalization 
for dynamic filtration through saturated porous media of the classical Darcy’s law. It was 
theoretically studied by Auriault.’ 

First the main assumptions and results are recalled. Further details are available in References 
1-5. Let us underline here one fundamental assumption: the spatial periodicity of the whole 
problem. If one period is called Cl then this assumption would be denoted as the %periodicity 
condition. 

A second part deals with the two discrete problems which are used for numerical computations. 
The existence and uniqueness theorems and the convergence of the discrete solution are not 
established in this particular case. All these results are given in References 6 and 7 for the case of real 
unknown functions (Stokes problem). The convergence of the algorithm used here is demonstrated. 

Then the implementation of these two approximations is explained and several tests are 

027 1-2091/85/080685-23%02.30 
0 1985 by John Wiley & Sons, Ltd. 

Received March 1984 



686 L. BORNE, R. CHAMBON AND J-L. AURIAULT 

performed. In particular the convergence of the Uzawa algorithm for increasing frequencies is 
tested. 

Finally computations of an example are presented and compared with experimental results. 

GENERALIZED DARCY’S LAW--PROBLEM TO BE SOLVED 

Assumptions and notations 

Assumptions. In the following, only two dimensional, periodic problem are treated. Two periods 
0 are sketched in Figure 1. The whole geometrical problem is given when the period 0 is known. 
All unknown functions are considered as spatially periodic. This property is called i2-periodicity. 
For instance, for the case of Figure 1, it means: 

Vm, n € N ,  F(x, + np,, x2 + mp,, . . .) = F(x,, x1,. . .) 
Let us note that the generalized law of Darcy is built into the general (three dimensional case). 
The present numerical study is restricted to the two dimensional case to simplify the 
implementation and reduce computation time. 

The fluid is assumed to be viscous Newtonian and incompressible. The velocity field is small 
enough to satisfy linearized Navier -Stokes equations. This means that the convective terms are 
negligible (very low Reynolds number for the flow), on the other hand the linear dynamical 
terms are taken into account. 

Notations. 
p 
p dynamic viscosity 
oj 
p unknown pressure, also R-periodic 
xi spatial variables 
t time variable 
F j  ‘body force’ components. This force generates the flow through the porous saturated media. 

Let us call the scale of one period, the microscopic scale. The scale of a large number of 
periods is the macroscopic scale. At the time t ,  the components F ,  are constant on the 

fluid mass per unit of volume 

velocity field components, the unknown periodic functions 

a a+Pt a+?Pl Xi 
I 

Figure 1. Two periods R of a porous media; R, = fluid domain; R, = solid domain; r, = fluid-solid interface 
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period. F, describes the macroscopic pressure gradient. p is then a fine description of the 
pressure distribution on a p e r i ~ d . ~  

Under these assumptions and notations, the equations governing the problem can be written 
(on the microscopic scale): 

(2) 2 = 0 (incompressibility condition). 

Then if the problem is studied under constant frequency (harmonic study), the unknown functions 
uj  and p and the ‘body force’ components can be written in the form 

av . 
ax, 

0 .  = jj .e’”‘ 
p e i W t  3 

J J ’  

F . = E .@‘, 

where w is a constant pulsation, and I?,, p, E j  are complex numbers without time dependence. 
J J  

By substitution and eliminating eiWf in (1) and (2) they become 

azo, ap 
pax,ax, ax, + - + F j  = iwpG,, 

ari, - 
axj  0. - _ _  

(3) 

(4) 

In the following, the complex numbers r i j ,  p, E j  can be denoted by v,, p ,  F ,  without any possible 
confusion. To simplify, the static parts of the quantities u,, p ,  F ,  have been taken equal to zero. 
Static contributions could be added to these quantities without changing equations (3) and (4). 
Then harmonic flow would be superposed on a permanent flow. 

In order to solve the problem (3), (4), it is necessary to add boundary conditions. 

Problem to be solved 

Let us denote by T 2  = dQ, - Tl, where aQ, is the boundary of the fluid domain and rl is the 

The unknown complex functions uj  and p would be defined on Q,, and the components F,  
fluid-solid interface. 

are complex constants on Q,. Then v, and p are solutions of 

[ v, = 0 on rl and v,, p Q-periodic on T2. 

Let us note some particular points of this linear Navier-Stokes problem: 
(a) The unknown functions are complex. 
(b) The boundary conditions are not homogeneous on an,  but only on rl. On dQ, - T, = T2 

the boundary conditions are the Q-periodicity conditions. 
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I Figure 2. An example of a period Q 

For instance, for the geometry of Figure 2, it means the same pressure distribution and 

(c) And, finally, the incompressibility condition must be satisfied, but with complex un- 

- - 
velocity field on the segments A,A, and B,B,. 

known functions (an extension of the classical difficulty). 

Solution of problem (5) 

References 1-3. It is shown that the unique solution can be written as 
Existence and uniqueness results for the solution of this linear problem are available in 

VMER,, uj(M) = kjf(w, M ) F , .  (6) 
On the macroscopic scale, the physical quantity which is significant is the flow of fluid through 

the porous media. Since F,  is constant on a,, 

with 

K j l ( o )  are complex components of a macroscopic second order tensor K(w). As for the classical 
law of Darcy, K(w) is a permeability tensor, symmetric and reversible. Notice that the inverse 
tensor H(o) = K-' (o )  has a clear physical meaning: 

H(o) = Hl(w) + iH2(w). 

The second order tensors Hl(w) and H2(w) have real components which are, respectively, the 
real part and imaginary parts of the complex components of H(o). Hl(w) is representative of 
the viscous dissipation and H2(w) is an inertial term.4,5 

NUMERICAL PROBLEM 

For the geometrical case of Figure 3, it is obvious that Ox,, Ox,, Ox, are the eigendirections 
for the tensor K(o). The components of K ( o )  in x l ,x2 ,x ,  axes should be represented by the 
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.3! 

/x2 

Figure 3. A typical period for our study 

following matrix: 

If the 'body force' F is in the x1 direction, the study of the flow will give only the component 

Finally, the numerical problem to solve is the problem (5 )  in fluid domain R, as shown in 
Kll(w). It is the aim of this study. 

Figure 2 for body forces in the x1 direction. 

Weak formulation 

Let us define E as: 

, v j ( j  = 1,2) complex functions defined VMER, 

a v  . 
ax 

and so that --L = 0; v j  R-periodic; v j  = 0 on rl 

To find v j  and p which are a solution of ( 5 )  is equivalent to finding V E E  so that V a E E  

(aj represents the conjugate complex number of aj). 

application of the Lax-Milgram the~rem.' ,~ 
The existence and uniqueness of the solution VEE for this weak formulation are obtained by 

Another weak formulation is possible on the space F defined by 

, v j ( j  = 1,2) complex functions defined 
F =  

and so that v j  is 12-periodic on Tz, v j  = 0 on rl 
Let us define the space 

G = ( p ,  complex function defined VMER,, R-periodic on rz}. 
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Then the weak formulation on F can be written: 
To find VEF, P E G  so that, V a E F ,  

and 
div v = 0. 

In the following, only this second formulation is used. To solve numerically the problem ( 5 )  
by the finite element method means to build a discrete problem on a finite dimensional space 
('numerical space'). Then the numerical solution is built on a basis of the numerical space. 

Elements well-adapted to the incompressibility condition are complex to build and the use 
of such elements is restrictive. Then a discrete problem for the formulation on the space E is 
difficult to build. 

It is more easy to build a discrete problem for the formulation on F.  Then the incompressibility 
condition is not satisfied at each point of iz,. Only the following relation is checked: 

where 
qe is any finite element of the discretization 
q is a linear function to be precised. 

To satisfy this average condition the Uzawa algorithm is used. The unknown discrete functions 
u j  are continuous from one element to another. 

Two conforming finite element methods are used. These methods are extension for complex 
unknown functions of the ones presented by Crouzeix and Raviart* for solving the stationary 
Stokes equations (o = 0). 

First discrete problem 

Let us define a discretization by a set of T triangles. Each triangle is denoted by q e , V e e  

On each element, the velocity comep=dnent u! is defined by the classical quadratic interpolation. 

At each point M of a triangular element qe, uj" is given by 

T 
{ 1,2,. . . , T ) .  Rp is defined by: 0: = u qe. 

Barycentric co-ordinates L,,  L,, L3 are used in the following with L ,  + L, + L, = 1. 

6 

k =  I 
VMEpe;  uj"(M) = 1 uj(Mk)#g(M)? 

where 
#,"(M) = Lk(2Lk - 1); k = 1,2,3, 
# 3 M )  = 4LL2,  
45 (MI = 4L2 L3 7 

#eg(M) = 4Ll L,, 
are the shape functions and uj(kfk) the nodal unknown components of the complex velocity of 
the node (see Figure 4). 

The six nodes on each triangle are the three vertices of the element and the mid-point of each 
side. 

Let us note that if the discrete velocity is continuous from one element to another the discrete 



CONFORMING FINITE ELEMENT COMPUTATIONS 69 1 

Figure 4. One finite element 'pc 

pressure is discontinuous. On one element the complex pressure p"(M) is constant. The in- 
compressibility condition is partially satisfied on each triangle q, by 

W will denote the discrete space of functions, the restrictions of which on any triangle qe are 
defined by the previous formulae. 

The discrete pressure pd on Qp, is defined as a constant value on each triangular element. It 
is discontinuous from one element to another. Q will denote the discrete space of these pressures. 
Both spaces Q and W obviously have finite dimensions. 

But to refine this numerical model, as is shown in Reference 8 by Crouzeix and Raviart for 
the Stokes problem, a second discrete problem is presented. 

Second discrete problem 

In this case, on each element q,, vj" is defined by 

V M G ~ , ,  vP(M) = v?(M) + LIL,L,Bj, 
where 

L,  L,L, is the so-called bulb function 
v?(M) 
Bj 

is the quadratic interpolation of the previous subsection. 
is an unknown vector component, like the previous nodal unknown v j ( M i )  

Now each element presents seven nodes: the six previous nodes and the barycentre G of the element. 
The unknown pressure is defined on each element qe by a linear function: 

Let us note that the discrete velocity is always continuous. The incompressibility condition 
is better satisfied but always partially by 

V e =  1,2, ..., T ;  -dQ=O and ( k = 1 , 2 ) .  

The discrete pressure is always discontinuous from one element to another. In the same manner 
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as in the previous subsection, ff' and 0 are the associated discrete spaces for velocity and 
pressure unknowns. Then the discrete problem can be written: 

Find V E W  (resp W) and ~ E Q  (resp Q) such that V ~ E W ( W )  

and 

(11) leads to a linear system to be solved if the discrete pressure is known. Then to satisfy 
partially (12) and obtain the discrete pressure p ,  the Uzawa algorithm is used. 

Numerical algorithm: Uzawa algorithm (see Reference 7 for the Stokes problem) 

Let us define some notations: 

(v, a)  = vjEjdQ 1 v 1 * = (v, v), 

(P, 4)  = PqdQ I P I = (P, PI, 

I4 

In; 
and Iqlc is the modulus of the complex number q. 

Then, with these notations (1 1) becomes 

p((v, a))  + iop(v, a)  + ( p ,  div a)  = (F, a). (13) 
In the following the superscript in parentheses indicates the step of the algorithm. If the pressure 

values at step rn are given, the unknown velocity at step rn + 1 is computed by: 
V a E  w(W), v("+ ')E W (  W) 

p((v'"+ '), a))  + iop(v("+ l), a) = (F, a)  - (p("), div a). (14) 
Then the unknown pressure is computed by P'"+~)EQ(Q); VqEQ(Q") 

(p("+ - p'"), q) - C(div v("+ '), q) = 0, 

where C is a constant to be defined, to obtain faster convergence of the algorithm. 
The first step of the algorithm is to assume initial pressure p ( O )  

Study of the convergence of the Uzawa algorithm. We present in the following an extension to 
complex unknown functions of the classical proof of convergence of the Uzawa algorithm (see 
for instance Reference 7). 

If u and p denote the discrete solution on W and Q (respectively W and Q") of the problem, 
V ~ E W ( W ) ,  v and p satisfy (13). 

If v("+') is the solution of (14), as v("+~)- -vEW(@) then by substitution of a by v ( " + l ) - v  in 
equations (13) and (14) and by subtraction one obtains 

~ ( ( ~ ( ' " + ~ ) - ~ , v ( " + 1 ) - v ) ) + i o p ( v ( " + l ) - v , v ( m + l ) - y ) =  -(p(")-p,div(v("+')-v)), 
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which can be written with the classical induced norms 

p I/ v ( ~ + ~ )  - v / I 2  + iwp/v(m+l) - vI2 = - (p'") - p,div(dm+l) - v)). (16) 
Using (15) with q = q c m + l )  = p("+l)  - p ,  and (q, div dm+ ')) = (q, div ( v ( ~ +  ') - v))VqEQ(Q)  one 
obtains 

(1 7) ( q ( m + l )  - q'"), q ( m + 1 ) )  - C(div(v("+') - v), q ( m + l ) )  = 0. 

(1 6) becomes 

But (17) can also be written: 

where Re denotes the real part. 
With (18) one obtains 

- 2CRe(div(v("+ - v), 4'")) = 2Cp / /  v("+ l )  - v 1) 

or, in another form, 

By adding up the previous inequality from m = 0 to N ,  one obtains: 

Then necessarily 

/q(mt1)-q(m)12 = / p ( m + 1 ) - p ( m ) / 2 - + 0  when m+m,  I ) V ( ~ + ' ) - - V / ) ~ - + O  when m-+cO, 

If C(2p - (CjS)) > 0, 0 < (C/2p) < 6 < 1. 
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In conclusion, the convergence of the velocity is demonstrated. But the corresponding result 
for the pressure is weaker (as for the classical Stokes problem). 

NUMERICAL IMPLEMENTATION AND TESTS 

Numerical implementation 

The linear system of equations, associated with equation (15), of the Uzawa algorithm is easy 
to solve. In fact the problem is solved on each element separately. 

The pressure is discontinuous from one element to another; then it is not necessary to assemble 
the elements. Moreover, in this equation (15), the imaginary part and the real part are not coupled. 

But for the linear system of equations, associated with equation (14) of the Uzawa algorithm, 
elements are linked together. Then to build and solve this linear system of equations we have 
used a frontal m e t h ~ d . ~  This technique was developed in Grenoble by Aussems" for symmetrical 
problems, and by Chambon6 and Poncet for non-symmetrical problems in solid mechanics. 
Naturally in (14) the dynamical term (iop(v'"'+'), a)) induces a coupling between the imaginary 
part and the real one of the unknown functions. Then with six nodes on each element, it gives 24 
degrees of freedom on each triangle. Moreover it is easy to see that the linear system can be written 

where [A] and [B] are symmetrical matrices with real components; Re{vN} and Im{vN} are, 
respectively, the real and imaginary parts of the velocity nodal unknown functions; Re (C} and 
Im (C> are the real and imaginary parts of the right hand side term of equation (14); o is the 
pulsation. 

Let us note that the matrix of the system is more and more non-symmetric when frequency 
is increasing. The tests hereafter illustrate this remark. 

The triangular elements are built using an automatic process. Quadrilateral elements are given 
by the equipotential lines and the flow lines of the hydrodynamical flow in the same media. 
These lines are computed using conformal transformations'2 and then, by division, triangular 
elements as 'regular' as possible are obtained. 

Finally, particular boundary conditions such as Q-periodicity need some explanations. The 
homogeneous boundary conditions on rl are classical. They are treated by a penalization 
method. In fact the numerical implementation of periodicity is very simple; the frontal method 
is well-adapted. 

First we assume spacial periodicity for the 2n nodes on Tz, as is shown in Figure 5. 
The R-periodicity of unknown functions is assumed by numerical identification of the nodes 

A, and B,. For the computer, the A, node number would be the same as the Bi node number 
( i  = 1 to N ) .  Then, when elements are assembled, no difference is done between Ai and Bi. For 
instance, let us consider a narrow slit (Figure 6). The equivalent numerical picture is shown in 
Figure 7. This is the same as a doubly connected set. 

In conclusion, let us notice that for many steps of Uzawa algorithm, only the second member 
of (22)  is changed. Then the construction and the triangulation of the matrix 

is only performed during the first step 
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I 
Figure 5. The periodicity of the nodes on r2. For i = 1 to N ;  x,(Ai) = x2(Bi) 

Figure 6. The boundary condition on TZ in the case of a narrow slit 

Figure 7. The equivalent numerical picture of the narrow slit 
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Tests 

It is convenient to test the efficiency of the method on an example where the analytical solution 
is known. As is shown by Avalleti3 for the narrow slit (Figure 8) the analytical solution for the 
velocity is 

F 
v1=-  

' O P  

v1 = a2 - c:  ( o = O ) ,  

where o is the pulsation, p is the fluid density, F is the macroscopic pressure gradient and v = pp 
with p the dynamical viscosity. 

Then many parameters are tested and, in particular, 
(i) refinement in the mesh 
(ii) the efficiency of the bulb function 

(iii) the constant C and the convergence of the Uzawa algorithm 
(iv) the convergence of the Uzawa algorithm when the frequency is increasing 
(v) the part of the initial pressure distribution. 

First, let us define an error parameter at the step m of the Uzawa algorithm. Let Vim)(i = 1,2) 
be a component of the average complex velocity on Qp at the step m. 

The numerical problem is solved in a non-dimensional form. In the following the subscript (a) in 
parentheses denotes non-dimensional quantities. Let us define these non-dimensional quantities. 
If a is a typical dimension of the pores Qp,p is the fluid mass per unit of fluid volume and p 
is the dynamic viscosity (v  = p/p), the different non-dimensional quantities can be taken as: 

'I 

Figure 8. A narrow slit 
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Figure 9. Log(em1) against the number of iteration N with o , ~ )  = 0 and for several values of C. The underlined values of C 
denote computations with bulb function. (Figure 16(a) gives the mesh which is used) 
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18 -- 

15 -- 

12 -- 
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5 10 15 20 25 30 35 40. EO 

Figure 10. Same as Figure 9 with = 1 
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18 

15 

1.5 

- 1.5 

8 16 24 32 40 48 56. EO 

Figure 1 1 .  Same as Figure 9 with a,*) = 2.32 

11 12. i O ' @ m1 ' 
,l.l 

I N 
8 16 24 32 40 48 56. €0 

Figure 12. Same as Figure 9 with at*, = 425 
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!-Log [eml] 

1 I L 1 1 i N 
2 4 6 8 10 12 1 4  16. E l  

Figure 13. Same as Figure 9 with w , ~ )  = 7 

1.1 
1.05 
1. 
0.95 
0.9 

0.5 

1 I L I I I I 1 
1 1 1 

N 

2 4 6 8 10 12 14 16 18 20. E l  

Figure 14. Same as Figure 9 with qa1 = 9 
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1.5 
15 -- 

12 -- 

9 -0.5 -- 

' t  
N 

12 16 20 24 28. E l  

Figure IS. Same as Figure 9 with ti+=, = 20, but for a different mesh (Figure 16(b)) 

For the pulsation o: 

the velocity v: 

the (microscopic} pressure p: 

the macroscopic pressure gradient F: 

u3 F F =---- 
(a) 2pv ' 

the spatial variable x i :  

X i  
Xi(@ = -. 

U 
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The error parameter eml("') is defined by 

Figures 9-15 give eml'"') for different values of qGb. In each Figure computations are performed 
with the same spatial discretization. The corresponding mesh is given in Figure 16. In each Figure, 
several kind of computations are performed: (a) for different values of the parameter C of Uzawa's 
algorithm, and (b) for the two discrete problems (with or without the bulb function). Note that 
on the Figures, computations with bulb function are represented by an underlined parameter C. 

The set of all computations performed on this particular case leads to the following comments: 
1. Refinement of the mesh gives similar numerical solution, as the two kinds of computations 

(with or without the bulb function). Nevertheless, a refinement in the mesh would be necessary for a 

Figure 1qa) A mesh for the narrow slit 

Figure Iqb) Refinement of the previous mesh 
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Table I. Optimum Parameter C for different pulsation cots) and 
for the two kinds of computations (with or without bulb 

function), for mesh of figure 16. 

0 1 232 4.25 I 9 

o < c < 2  
without bulb 1 1 1  1.1 1.4 1.8 
function 
O < C < 2  
with bulb 1 1 1  1 1 1 
Function 

more complicated geometrical problem. This will be the case in the next section. The effrciency of 
the bulb function is diffrcult to evaluate for the narrow slit. Let us notice that for o = 0, the quadratic 
interpolation for the velocity gives the analytical solution, as for the pressure which is uniform. 

2. The best value for the parameter C and the convergence of the Uzawa algorithm is a function 
of the non-dimensional pulsation o and the kind of computation (with or without the bulb 
function). The results are summarized in Table I. 

3. For ‘high’ frequencies, convergence of the Uzawa algorithm is weak. Then the computations 
(with or without the bulb function) becomes expensive and less and less accurate. This is an 
important restriction for these computations. This behaviour is explained by the structure of the 
matrix of the linear system (22): 

[ o ~ ~ ~  -m] 
CAI ’ 

This matrix becomes more and more non-symmetric when the frequency is increasing. 

Uzawa algorithm (see Figure 15 for C = 1.2 and C = 1.3). 
4. The initial pressure distribution does not take any part in the velocity of convergence of the 

NUMERICAL EXPERIMENT 

In order to compute the components K, , (o)  of the generalized permeability tensor K(w) for the 
new geometry sketched in Figure 17 several computations are performed: 

(a) with or without the bulb function 
(b) for two different meshes: mesh A (Figure 18) and mesh B (Figure 19). 
In the following the component K ,  ,(o) will be denoted as K(o) .  As previously, the results are 

Let us define 
presented in non-dimensional form. 

- Hl(o) + iH2(o) H(w) = - - 1 
K ( 4  

and n, the porosity of the media, 
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X1, __ 

Figure 17. Another geometrical period 0 to study 

The viscous dissipation H l ( w )  

The inertial part H 2 ( w )  

and 

H 2 ( 4  
(0) 

tancp=- 

To test the dynamic behaviour of the media, the results of computations are compared to those 
of a narrow slit, which is defined by the following ‘equivalence property’. 

The two media (Figure 17 and the narrow slit) are said to be ‘equivalent’ if they have the same 
static permeability K(w = 0) and the same porosity. Let us note that for any media, with the scale 
parameter a, an ‘equivalent’ narrow slit can be found. 

In Figures 20 and 21 the numerical results are compared with an ‘equivalent’ narrow slit. 
In Figures 22  and 23 the same numerical results are compared to the experimental data. 
The set of these computational results leads to new comments. The previous conclusions for the 

narrow slit are still valid. 
For the computations without the bulb function and for the two meshes the results are different. 

A refinement in the mesh gives a best numerical solution but a great number of degrees of freedom 
is rapidly reached. Another refinement in the mesh to test the validity of solution of the mesh B has 
not be performed. It would be too expensive in C.P.U. time and in memory. The computations on 
mesh B lead to about 5500 degrees of freedom. This is an important limitation for computations. 
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I 

Figure 18. A First mesh (A) for our problem 

Figure 19. A second mesh (B) for our problem. Quadrilateral elements are divided into two triangles by the shortest 
diagonal. 
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Figure 20. H l,,) against frequency a+,,:----the equivalent narrow slit. Numerical results: A mesh A without bulb 
function; A mesh A with bulb function; 0 mesh B without bulb function; 0 mesh B with bulb function 
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Figure 21. H2,,, against frequency w , ~ ) .  Notations as in Figure 20 
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Figure 22. Phase against frequency qe,: I experimental data; numerical results: as in Figure 20 

Figure 23. against frequency + experimental data; numerical results: as in Figure 20 
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A refinement in the shape functions (bulb function) provides better results. The computations 
with the bulb function for the two meshes A and B are in agreement. The cost of such a refinement is 
very low. It does not add many degrees of freedom. Moreover the supplementary node is an interior 
one, which is treated on the element. The dimension of the linear system to be solved is not changed. 

CONCLUSION 

In conclusion, the extension to complex unknown functions of the methods of Crouzeix and 
Raviart* gives good results. The interest of the bulb function seems to be obvious. Nevertheless two 
important limitations of these computations are demonstrated. Conforming elements of Crouzeix 
and Raviart provide a big linear system. The use of non-conformal finite element could perhaps 
reduce the dimension of the problem, without loss in precision. The computations for ‘high’ 
frequencies are difficult and expensive. A refinement in the algorithm would be tested. 
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